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Abstract. The stationary equilibrium of turbulent flow is a balance between the external 
energy input and internal viscous dissipation. We introduce, in a natural way, a maximum 
chaoticity principle for turbulent equilibrium that leads to the prediction of correct energy 
spectra in a number of different dynamical situations. The principle has been applied to 
three- and two-dimensional turbulence, intermittency corrections, thermal convection, 
helicity turbulence and three- and two-dimensional magnetohydrodynamics. Various 
analogies have been pointed out with the statistical mechanics of conservation systems to 
which a maximum entropy principle applies. 

1. Introduction 

Let us consider a thermodynamic system at thermal equilibrium with a heat reservoir, 
for which Liouville’s theorem holds 

where {g i }  are the phase variables of the system and p ( { q i } ,  t )  is a density function in 
phase space I‘. 

The constraint of probability conservation implies that the stationary probability 
distribution F ( p ) ,  on the basis of an ergodic postulate, must be a function of additive, 
first integrals of the motion. If F ( p )  depends on energy only, Gibbs’ distribution holds 
for a ‘small’ system in equilibrium with a much larger one 

F(p)=exp(-PW)) (1.2) 

as may also be seen by using arguments based on the central limit theorem (Khinchin 
1949). 

Gibbs’ distribution itself may be obtained by using a maximum entropy principle in 
the search for the functional F ( p )  describing the equilibrium distribution. We can 
make the statistical mechanics of an inviscid (zero viscosity) fluid in the usual manner 
(Salmon et a1 1976) by decomposing the velocity field V(x,  t) into a Fourier series and 
truncating at a sufficiently high value of k : 

1 v=(x, t )  = 1 v,(k, t )  exp(ik 9 x) 
L lkl<k,,m 

I Present address: IBM Scientific Center, Rome, Italy. 

(1.3) 
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(for the sake of simplicity let us consider a fluid confined in a d-dimensional box of side 
L, with periodic boundary conditions). For V, (k, t) variables Liouville’s theorem holds 
at zero viscosity and the energy 

is conserved. Gibbs’ distribution (1.2) applies to inviscid truncated models of Navier- 
Stokes (NS) equations leading to energy equipartition among all considered normal 
modes V, (k). One could naively think that in the case of fuily developed turbulence, 
where the energy is conserved in mean by the external input, equilibrium statistical 
mechanics holds and the results obtained in the inviscid case are correct. This implies 
that the energy spectrum E ( k )  for d-dimensional turbulence has the form 

E(k)a k d - ’ .  (1.4) 

Equation (1.4) is in violent disagreement with the phenomenological theories of 
turbulence (Rose and Sulem 1978) which give 

(in the inertial range). Thus the maximum entropy principle does not describe fully 
developed turbulence even qualitatively because of its substantially ‘static’ character (it 
applies to conservative systems for which external energy injection is not required to 
maintain a stationary state). 

On the other hand turbulence dynamics is strongly characterised by such 
phenomena as energy transfer from one scale of the motion to another, which have no 
counterpart in ordinary statistical mechanics. 

More precisely, if we supply energy from outside to a turbulent system at a constant 
rate, the system may well attain a stationary condition. Viscous dissipation (which is 
viscosity independent at high Reynolds numbers (Batchelor 1953)) will indeed remove 
(by transforming it into heat) supplied tnergy at a rate identical to that of injection. 

The attainment of a stationary state is, however, a basic postulate for any statistical 
description of turbulence to have a definite sense. However for a turbulent system it is 
not possible to derive the Gibbs canonical distribution F ( p )  Kexp(-@E) on phase 
space for a small part of the system because the whole system does not conserve its 
energy. 

Other maximum randomness principles were proposed to describe the stationary 
equilibrium of turbulent flows. Fujisaka and Mori (1979) have recently estimated the 
correction to the Kolmogorov law due to intermittency, postulating that Shannon’s 
entropy of the probability of having intermittent volume must be maximum. This 
approach can only be used to estimate the intermittent corrections and is always based 
on the idea of ‘equilibrium’. Another maximum randomness principle was proposed by 
Edwards and McComb (1969) to select the statistical properties of the stationary state. 
Unfortunately the calculations involved in the use of their principle are very long and 
difficult because they try to derive a theory from the fundamental equations. In this 
paper we show that if we state the principle for which the ‘predictability time’ (Lorenz 
1969, 1972, Lilly 1972a, b), i.e. the time in which a perturbation on the smallest scale 
entering in the motion (the dissipative scale) influences the large scale motion, must be a 
minimum, we obtain the correct laws for the energy spectrum E ( k ) .  
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The physical significance of this principle is quite evident: the statistical properties 
of the system (particularly, as we shall see, the typical velocity fluctuations at different 
scales of motion) are those which achieve the maximum interaction velocity among the 
various scales of the fluid motion, that is, the more dynamically chaotic situation. 

The fundamental difference between our variational principle and the other ones 
(Fujisaka and Mori 1979, Edwards and McComb 1969) is its dynamical nature: the 
previous maximal randomness principles concern the 'static' properties of a stationary 
state while ours concerns the evolution of a perturbation around a stationary state, i.e. a 
dynamical property. 

In 8 2 we shall describe the variational principle and compare our result for E (k )  
with the Kolmogorov theory in three dimensions. In 0 3 we briefly apply our method to 
several cases of fully developed turbulence. In 0 4 we state some analogies with the 
statistical mechanics. Conclusions are reported in 8 5 .  

2. The variational principle 

We shall now give a mathematical expression for the predictability time. For the sake of 
simplicity let us exponentially divide (Frisch et a1 1978) the scales of the motion, that is, 
let us consider the scales 11, 12,  . . . , I,, . . . where 

1, = b-"lo b > l  (2.1) 
and 10 is the 'external length', i.e. a length which is characteristic of the global flow (for 
example, the correlation length of the velocity field). The predictability time is defined 
as follows 

where r,, is the time in which a perturbation on the nth scale influences the ( n  - 1)th 
scale. N is the order number of the dissipative scale 7 :  the last scale involved in the 
motion, and for which the Reynolds number is of the order of one 

7 = 1N 1NVNf Y - 1. 

Following Lorenz (1969, 1972), Lilly (1972a, b), Orszag (1977) and Frisch (1980) one 
can believe r, to be the typical evolution time of the nth scale structure (the turnover 
time, characteristic for distortion at scale -Z,) 

r, =I,! V, = l/k,V, k, = 1,' (2.3) 
where V, is the typical velocity difference at scale I,, : 

E(k,) - Vtk,'. V ,  2 = lk;+' E ( k )  dk 

E ( k )  is the energy spectrum, defined as the kinetic energy for unit mass and unity 
wavenumber (5," E ( k )  dk = $( V')). The choice (2.3) comes in a natural way by the 
Navier-Stokes equations in spectral form if one assumes that the interactions between 
different scales of motion are essentially local in k space. The predictability time 
defined in (2.2) is the time in which the system 'forgets' its initial conditions. 

The rate of loss of information (in the information theory meaning) about the state 
of the system may be connected with the deformation of a small representative volume 
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in phase space (Brillouin 1962). More particularly, a parameter that gives a quan- 
titative measure of the sensitive dependence on initial conditions is the maximum 
Lyapunov number AM (for a mathematical definition see Benettin eta1 (1976), Mori and 
Fujisaka (1980)). In a ‘chaotic’ system (as a turbulent flow) A M  is connected with the 
growth of the distance D(t )  in phase space between two points whose initial separation 
was D(0) (Ruelle 1980a) 

D(r) -D(O) exp(AMt). (2.5) 
Ai* clearly represents the time over which it is practically impossible to follow the 
dynamical evolution of the system. 

From our definition of the predictability time it seems possible to state the 
correspondence 

T, -AG*. (2.6) 
The inverse of the predictability time appears to be connected to the mean rate of 

entropy production (in the information theory meaning) (Brillouin 1962, Zaslavskii and 
Chirikov 1972, Rabinovich 1978). 

We are now seeking an expression of V,  that minimises the predictability time. The 
minimisation of Tp must be constrained by the conservation of the mean energy E of the 
flow 

(2 .7 )  2 E = i C  V ,  
n 

(indeed we are interested in the properties of the turbulent motion in the stationary 
state and far from the dissipative scales). 

By making use of the standard technique of Lagrange multipliers we obtain 

a 
a Vn 
-( Tp + AE) 0 

i 
1 -- 

knVE-Avn (2.9) 

(2.10) 

From the equation (2.10) we directly obtain the spectrum 

(2.11) 2 -1 E(kn)  - V , k ,  = A - 2 / 3 k i S / 3 .  

We easily can see that the Lagrange multiplier A is proportional to the inverse of the 
energy dissipation ( E ) ,  indeed 

(2.12) 

and considering that 

v N /  kNV - 1 (2.13) 

it follows by (2.10), (2.12) and (2.13) that 

A-(&>-’* (2.14) 

Equations (2.11) and (2.14) constitute the well known ‘-513’ Kolmogorov law (Monin 
and Yaglom 1975). 



Statistical mechanics of turbulent Pow 887 

3. Applications of the variational principle 

In this section we present the results that one can obtain applying the variational 
principle seen in 0 2 to the turbulence in two dimensions, with intermittency, with 
thermal convection, in three dimensions with helicity, and in three- and two-dimen- 
sional magnetohydrodynamics. The results are summarised in the table 1 together with 
corresponding results obtained by other means (experimental, numerical, etc). The 
developments that are needed in each of the cases considered are reported in the 
appendices. Our results in the case of two-dimensional turbulence and turbulence of 
convective fluid motions are consistent with the phenomenological theories. 

Table 1. 

E ( k )  by the 
variational E ( k )  from the 
principle literature 

Other results for 

(Kraichnan 1967, 
Batchelor 1969) 

E ( k )  - k-513P:/3 E ( k )  - k-513P:13 Intermittency corrections 

Turbulence of convective 
fluid motions 

E ( k )  - k-”I5 

k-5/3 
Three-dimensional turbulence 
with helicity 

E ( k )  - [ k - 7 / 3  

Three-dimensional E ( k )  - 
magnetohydrodynamic 
turbulence 

Two-dimensional E ( k )  - 
magnetohydrodynamic 
turbulence 

(Frisch et a1 1978) 

E ( k )  - k-”j5 
(Bolgiano 1950, 
Obukhov 1959) 

(Brissaud et a1 1973) 

(Andre and Lesieur 1977) 
E ( k ) -  k-513 

k S k o  k-I k s k o  
kaka E ( k ) - [ k - 3 1 2  kaka 

(Pouquet et al 1976) 

k s k ,  k-113 k s k o  
k b k o  E ( k ) - [ k - 3 1 2  k b k o  

(Pouquet 1978) 

In the case of intermittency correction our result is equal to one obtained by Frisch et 

We remind the reader that the probability Pk of having an intermittent configuration 
al (1978) from other considerations. 

at scale k-‘ is given by: 
- (d-D)  pk = (k/kO) 

where d is the physical dimension of the space and D is the Mandelbrot ’fractal’ 
dimension (Mandelbrot 1974, 1976). D is determined by the dynamics of the system 
(Mori 1980) as a result of which Pk strongly depends on the system of equations being 
examined. 
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In three-dimensional turbulence with helicity a spectrum identical to our one was 
obtained by Brissaud er a1 (1973) through phenomenological considerations (helicity 
cascade for k b ko and energy cascade for k 5 ko).  The hypothesis of a simultaneous 
energy and helicity cascade for kaka leads to E(k)-k-5 '3 .  This last result was 
obtained by AndrC and Lesieur (1977) also with the EDQNM (eddy damped quasi- 
normal Markovian) approximation. There are however no experimental results. 

In three-dimensional magnetohydrodynamic turbulence our results differ from 
those of Pouquet et a1 (1976) over the range k B ko by nearly 10% (in the exponent 
value); this disagreement may be due to the fact that we consider only local interactions 
in the k space. However, if a law of the form 

E ( k )  s ck-a  (3.1) 
must hold, then we must have (Pouquet 1978) 

d = 3  
d = 2 .  (3.2) 

Our results agree with (3.2) while those of Pouquet et a1 (1976) obtained through the 
EDQNM approximation do not. 

Also in the two-dimensional magnetohydrodynamic case we obtain a perfect 
agreement between the two approaches in the range k d ko and a weak 10% difference 
in the range k 3 ko. 

4. Some analogies with statistical mechanics 

In this section we want to point out some analogies between statistical mechanics and 
fully developed turbulence. Our considerations are not an attempt to define a statistical 
mechanics of turbulence but only an attempt to a better understanding of the behaviour 
of turbulent flows. 

In statistical mechanics the temperature T (the inverse of the Lagrange multiplier p )  
is connected to energy fluctuation (in a continuous system) 

(4.1) 

where H is the energy of the system. 
In a turbulent system, where a variational principle is supposed to hold, A is the 

analogue of p while the mean energy dissipation ( E )  corresponds to T. It thus seems, at 
least formally, that a parallelism is established between T and ( E ) .  

This analogy seems to be demonstrated by the fact that for a turbulent system also 
the equation (4.1) holds changing T into ( E ) .  

Indeed, let us write the NS equations in the Fourier space 

( H 2 )  - ( H ) 2  - T 2  

at V, ( k  ) = - vk V, (& ) + C Aaer (k, k ' , & ") VB (k ') V,  ( k ") + F, (k ) . (4.2) 
k'.k",B,y 

Fa@) is the forcing term injecting energy on the large scale 

while 
F, ( k )  = FaS (k - ko) (4.3) 

Va (k) = Va (k 1 ( Va (k )> = 0 for k f ko (4.4) 
Va(k0) = (va(ko))+SVa(ko) (SVa(ko)) = 0. (4.4') 
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The energy of the system is 

giving 

d E  -=-I zk21Vm(k)12+I F,(k)V,(k). 
dt m,k Q, k 

889 

(4.5) 

(4.6) 

At stationary equilibrium there is balance between injection and dissipation and we 
have 

(dEldt) = 0 (4.7) 

that is ( E )  = constant where the average ( .) means average as an ensemble of repeti- 
tions (randomness may be introduced for example at the level of the initial conditions). 

From (4.6) and (4.7) we obtain 

from which 

(4.9) 
under the very common and reasonable assumption of statistical independence of large 
scale velocity fluctuation with respect to that of the other scales. On the other hand, 
experimental data give (Kuo and Corrsin 1971) 

( E 2 )  = C(&y (4.10) 

2 2 
= ( E  ) - ( E )  =a: 

with C = 4 for d = 3. 
Equations (4.8) and (4.10) imply 

((dE/dt)2) = C ~ ( E ) ~  c1=3 .  (4.1 1) 

On the other hand (Monin and Yaglom 1975, p 87) we know that 

(4.12) 

where H ( w )  is the amplitude at frequency w of & = (E2)  - (E)2. 
Because the energy is almost entirely contained within the large scales of the motion 

W O  m 

U ;  = jo H ( w )  d o  = Io H ( w )  dw 

where W O -  Ti’, TO = l/koVo. 
If T << To, it follows from (4.12) that 

((E(T) -E(0))2) = jwo $ T ~ W ’ H ( W )  dw 
0 

(4.13) 

(4.14) 
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where W O *  - wo; as 7 + 0 equation (4.14) gives 

((dE/dt)’) - w t 2 u ;  - Ti2&. 

Now, by combining (4.15) and (4.11) we have 

(E2) - (E>2 - 

(4.15) 

(4.16) 

which is the equivalent expression of (4.1) in turbulence. This result has interesting 
consequences in &dimensional turbulence with d >> 1. 

In d dimensions we have 

(4.17) 

where 

are the energy dissipation rate and energy of the ith component (i = 1,2, . . . d). From 
(4.14) one derives 

( (E(7)  -E(O))’) = a 7 2 ~ $  (d)’UL (4.18) 

where W O *  (d) - 1/ To(d)cc d-’” (Fournier et a1 1978) and by which 

((dE/dt)’) - W O *  ( d ) 2 ~ L x a i / d .  (4.1 8’) 

Now, using (4.18’), (4.17) and (4.9) we have 
2 uE1 - ~ $ ( d ) ~ u ; ,  XuLl Id ;  (4.19) 

energy dissipation fluctuations are thus negligible when d + a3 and one may expect from 
this that the Kolmogorov law is right in the limit d -* 03 corresponding to a mean field 
theory (Kraichnan 1974, Ma 1976). 

5. Conclusion 

With this variational principle one obtains, in a unified way, many results previously 
derived by various arguments. Our hope is that this approach m y  play the role of a 
‘mean field theory’. 

It is possible that this variational principle corresponds to a saddle point approxi- 
mation on the ‘true’ probability distribution. It would be interesting to understand the 
connection (if any) with the more mathematically minded approach of Ruelle 
(1980a, b). 
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Appendix 1. Two-dimensional turbulence 

In two-dimensional turbulence, besides energy the enstrophy is an integral of motion 

R = $ Iw(x)I2 d2x o (x) = rot V ( x ) .  (Al.  1) 

For viscous fluid motion the mean value of the enstrophy will be conserved as a result of 
the balancing between viscous dissipation and external enstrophy input. 

By writing 0 = Z, k ; V ;  our variational principle becomes 

Equation (A1.2) implies 

1 vn = 3 1 / 3 '  (Alkn + A ~ k n )  

(A1.2) 

(A1.3) 

It is easily verified that A, - ( E ) - '  and A2 - (q)-' where 7 is the enstrophy dissipation 
rate; by (A1.3) it follows that 

(A1.4) 

Appendix 2. Intermittency corrections 

We consider Vn as a bivalued stochastic process (Frisch et a1 1978, Benzi and Vulpiani 
1980); one of these two values, i.e. the one referring to the intermittent configuration, 
will occur with probability Pn ; the other, which refers to the non-intermittent 
configuration, will occur with probability (1 - Pn). 

We thus write 

vf, -0 'laminar' configuration 
v n = {  vt intermittent configuration 

and thus obtain for T, 

T,, = l / k n V L  

the flow dynamics being dominated by intermittent fluctuations. 
The mean energy of the flow (which is conserved) is 

the variational principle implies 

E(k , )  - (V;)*P,k,' = A - 2 / 3 P ~ / 3 k ~ 5 / 3  

Appendix 3. Turbulence of convective fluid motions 

(A2.1) 

(A2.2) 

(A2.3) 

(A2.4) 

The equations describing this phenomenon are the Boussinesq ones (Chandrasekhar 
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1961), that is the NS equations plus the heat equation under suitable approximations 

a,V+ (V - V)V = ~ A v - p - l V p  + r T ' m  

v .  v=o 
d,T' + ( V 9 V) T' = x AT' +f 

(A3.1) 

where r = go, g is the gravity acceleration and 8 is the thermal expansion coefficient; m 
is the gravity force direction and T' is the temperature derivation from its mean value. 

In the Fourier space the nonlinear term in the first equation is of order of -k,V;. It 
is reasonable to assume that, in turbulent conditions, this term has the same order of 
magnitude as re,,, when 8, is the corresponding Fourier amplitude of T'.  This amounts 
to assuming that the dynamical evolution of the fields V and T' occurs with the same 
characteristic times. The following is thus considered to hold 

e, - r-I vk,. (A3.2) 

At the stationary state, the forcing term f balances the dissipative one, xAT', thus 
securing the conservation of the mean value of the quantity 

(T')' d3x. (A3.3) 

In k space, by making use of equation (A3.2) the quantity (A3.3) becomes 

c 0; - r-' k i  V :  = constant. 
n n 

(A3.4) 

(A3.5) 

(A3.6) 

A-' is easily seen to be proportional to 
(A3.3)). 

(the mean rate of dissipation of the quantity 

Appendix 4. Three-dimensional turbulence with hellcity 

In a three-dimensional non-viscous fluid also helicity is conserved (as well as energy) 
(Brissaud et a1 1973) 

(A4.1) 

For a real viscous fluid, by supplying energy and helicity at a large scale (-lo) we may 
obtain the conservation of their mean values despite dissipation. 

The following properties will be conserved 

H =$E k,V;. E = i C  V ,  2 

n n 

From our principle we obtain 

(A4.2) 



Statistical mechanics of turbulent flow 893 

Appendix 5. Three-dimensional magnetohydrodynamic turbulence 

The descriptive equations are ( V  is the velocity field and 6 is the magnetic field) 

(8, - v A) V = -( V * V) V + (6 * V) b - p - ’ V p  + fi 

(A5.1) 

V * 6 = 0 .  

The following conservation laws (Pouquet et a1 1976) hold (because of the presence of 
the forcing terms fl  and f 2  balancing the dissipative ones) for the mean values of the 
quantities 

$ I ( V 2 + b 2 )  d3x energy (A5.2) 

$ I (a a 6 )  d3x magnetic helicity (A5.3) 

where 6 = rot a, that is, a is the magnetic potential. By requiring that coupling terms in 
6 and V in the first two equations of (A5.1) have the same order of magnitude as the 
transport ones we have 

b,, - V,, (A5.4) 

and then 

a,, - k i ’b ,  - k,’ V,. (A5.5) 

By using (A5.4) and (A5,5), (A5.2) and (A5.3) become 

E = $ C  V, ,  2 HM=$c ki lV; .  
n fl  

Our variational principle requires: 

V,, = (Alk,, + A z ) - ” ~  (A5.6) 

(A5.7) 

Appendix 6. Two-dimensional magnetohydrodynamic turbulence 

The dynamical equations of the system are the equations (A5.1); while the quantities to 
be conserved (in the mean) are (Pouquet 1978) 

3 I (V2+b2) d2x energy (A6.1) 
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$ a' d2x square magnetic potential. 

V,, - b, holds again, and then 

E = $ 

A = $1 ki2V? = constant. 

V :  = constant 
n 

n 

Applying the variational principle we obtain 

Vn = (hlk, ,  +h2/kn)-1 /3 .  

From (A6.5) we derive 

(A6.2) 

(A6.3) 

(A6.4) 

(A6.5) 

(A6.6) 
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